If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15w^2+17w-4=0
a = 15; b = 17; c = -4;
Δ = b2-4ac
Δ = 172-4·15·(-4)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-23}{2*15}=\frac{-40}{30} =-1+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+23}{2*15}=\frac{6}{30} =1/5 $
| x^2-182x-960=0 | | 1614.96=34.215118/(x-0.0489 | | (x-2/3)-(x+1/4)=4 | | 5(2x+4)=13x-3 | | 13x-7=12(x-1)+×+5 | | 4z+43=12z-61 | | 4f+92=36f-100 | | 23k+41=16k+90 | | 23x+11=7x+91 | | 3h-82=h+34 | | 6g+88=12g-38 | | 4b-8-6b=-14 | | 7k+68=28k-100 | | 13u+39=32u-37 | | 5-3x=-7+7 | | 6v+67=14v-29 | | 5x+7/3=9 | | 9u-99=8u-89 | | 5p+50=15p-90 | | 5v+62=41v+26 | | 12y+96=27y+21 | | 41g+72=84g-100 | | 6s+91=16s-49 | | 8x-11=x-9 | | 10f-59=9f-47 | | 13h+69=24h+14 | | 20a-5=16a+23 | | g+17=2g-18 | | 2(x+3=-4x-25 | | -4v-2=2v-2+v+100÷4 | | a/4-8=9 | | 14n+36=24n-24 |